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Abstract

Learning autonomous-driving policies is one of the most
challenging but promising tasks for computer vision. Most
researchers believe that future research and applications
should combine cameras, video recorders and laser scan-
ners to obtain comprehensive semantic understanding of
real traffic. However, current approaches only learn from
large-scale videos, due to the lack of benchmarks that con-
sist of precise laser-scanner data. In this paper, we are
the first to propose a Driving Behavior Net (DBNet), which
provides large-scale high-quality point clouds scanned by a
Velodyne laser, videos recorded by a dashboard camera and
standard drivers’ behaviors. Extensive experiments demon-
strate that extra depth information help networks to deter-
mine driving policies indeed.

1. Introduction
Driving policy learning is a core problem in autonomous

driving research. Computer vision is expected to play an
important role in this challenging task, since driving plan-
ning and perception together run as a closed loop. There-
fore, some computer vision researchers [14, 20, 21, 27] at-
tempt to model it as a perception-action model, which is an
end-to-end system that maps from pixels to actuation. It
opens a new direction in the autonomous driving field.

However, current research and dataset neglect an impor-
tant cue, namely, depth information. On the one hand, bi-
ological experiments [4, 19] show that monocular people
can not drive nicely. For instance, monocular drivers in ex-
periments did worse in parking and lane changing tasks for
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Figure 1. Driving Behavior Net (DBNet): a benchmark for policy
learning in autonomous driving.

the lack of stereoscopic depth perception. It verifies depth
information is necessary, though drivers have perfect recog-
nition ability. Most of the people believe that depth infor-
mation should be a necessary cue in real-world auto-driving
due to the consideration of safety. On the other hand, many
high-quality depth sensors would be cheap and widely af-
fordable. For example, the cost of Velodyne comes to hun-
dreds of dollars, that is, it will be ready to be equipped in
most autonomous cars.

In consequence, computer vision researchers should
pay more attention to perception-action model with depth.
Whereas, we found it still misses out both research road-
maps and datasets. Thus, this paper aims to fundamentally
study this problem. We offer a large-scale dataset that in-
cludes both driving videos with depth and corresponding
driving behaviors. Our dataset is largely different from pre-
vious ones for vision-based auto-driving research. On the
one hand, the depth data sampled by a LiDAR camera is
provided, which misses in [8, 27]. On the other hand, some
datasets like KITTI [10, 11] provide depth information,
however, driving behavior is not included, which makes
them fail to be a benchmark for policy learning. In short, the
proposed dataset is the first driving policy learning dataset
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Figure 2. Our data collection platform with multiple sensors.

that includes depth information. Our dataset involves many
features: (1) large-scale: our dataset consists of more than
10k frames of real street scenes and the amount of data ex-
ceeds 1TB in total. (2) diversity: we record continuous but
varied scenes in real traffic, such as seaside roads, school
areas and even mountain roads, which include a number of
crossroads, pedestrians and traffic signs. (3) high-quality:
point clouds, videos and drivers’ behaviors in our dataset
are all acquired by high-resolution sensors, which provides
distinct recovery of real driving conditions.

Apart from the dataset, this paper attempts to throughly
study how important depth information is for auto-driving
and fully discuss what we can achieve if current techniques
are used. First, we produce an analysis that why depth is
necessary for autonomous vehicles. Second, we answer the
question that how to leverage current techniques, if depth is
given. Finally, we draw a conclusion that depth information
would benefit learning driving policies and it has a large
room to improve techniques in terms of how to use depth. It
again verifies that a qualified dataset is crucial for advancing
this topic.

In conclusion, the key contributions of our work in this
paper are mainly two aspects: First, we propose a dataset
which is the first policy learning benchmark composed of
driving videos, LiDAR data and corresponding driving be-
haviors. Second, we conduct complete analysis on how im-
portant depth information is, how to leverage depth infor-
mation and what we can achieve by utilizing current tech-
niques.

2. Related Work
The ultimate goal in autonomous vehicle navigation is to

learn driving policies. In this section, we investigate driving
policy learning methods and existing driving datasets.

2.1. Driving Policy Learning

Because of the complexity of real street scenes, deep
learning techniques such as neural network are expected the

most promising methods to solve this problem. Pomerleau
et al. [21] was the pioneer to use neural networks for lane
following and obstacles avoiding. There are now two main-
stream ways for this promising task.

End-to-end learning: This line of works employed end-to-
end systems mapping pixels directly to policies. [14, 20, 21]
demonstrated that autonomous vehicles are capable to learn
driving policies nicely in simple scenarios, such as highway.
NVIDIA [14] group did excellent attempts to map directly
from images by utilizing multi-layer convolution neural net-
work and successfully self-drive in real roads. Recently,
[27] broadened video scenes and illustrated that it is feasi-
ble for vehicles to drive in multiple complex situations.

Learning affordable rules: Rather than directly obtain
driving policies, these works learned some affordable in-
formation in advance which is helpful for decision making.
[6] proposed to learn some pre-defined low-level measures
such as depth information. Whereas, more works [1, 3, 29]
used neural networks to solve relevant helpful problems
such as semantic segmentation based on monocular images.
[2, 5, 7, 18] attempt to perform 3D object detection or seg-
mentation leveraging LiDAR information.

2.2. Existing Driving Datasets

Large-scale datasets have contributed greatly to the de-
velopment of machine learning and computer vision. As
for the autonomous driving area, research relies much on
some benchmarks [8, 11, 17, 24, 27]. These datasets have
different features and hierarchies. We conducted a compre-
hensive survey on existing driving datasets in the view of
policy learning challenge.

Comma.ai [24] proposed their novel architecture for policy
learning with their dataset published, which contains around
7.25-hour highway driving data divided into 11 videos. The
released video frames are 160 × 320 pixels in the middle
of the captured screen. Besides, the vehicle is equipped
with several sensors that were measured with different fre-
quencies and interpolated to 100Hz. Example data coming
from sensors are the car speed, steering angle, GPS, gyro-
scope, IMU, etc. However, this dataset only concentrates on
highway driving scenarios, which is not suitable for generic
driving policy learning. In addition, it only consists of 2D
vision information, that is, only images are used for making
decisions.

KITTI [10, 11] established a benchmark which comprises
389 stereo and optical flow image pairs, stereo visual odom-
etry sequences of 39.2 km length, and over 200k 3D ob-
ject annotations captured in cluttered scenarios. It provides
instance-level annotations for humans and vehicles in real
scenes, which is intended for object detection and segmen-
tation tasks. However, KITTI is only composed of less



Figure 3. The pipeline of data preprocessing when constructing dataset. Multiple perception are equipped for acquiring high-resolution
data. Videos, point clouds and driving behaviors are preprocessed jointly in figure. Finally, we register the corresponding time for three
types of data and obtain our benchmark.

busy suburban traffic scenes. In other words, KITTI ex-
hibits significantly fewer flat ground structures, fewer hu-
mans, and more suburb scenes, which results in lack of di-
versity. Moreover, the vehicles do not fix multiple sensors,
so there is no standard drivers’ behaviors. On the whole,
this benchmark is not designed for learning driving poli-
cies, but for other affordable tasks.

Cityscapes Cityscapes [8] is a large-scale, diverse set of
stereo video sequences recorded in streets from 50 differ-
ent cities. It mainly provides images and a small number
of videos. In particular, 5000 of these images have high-
quality pixel-level annotations and 20000 additional im-
ages have coarse annotations to enable methods that lever-
age large volumes of weakly-labeled data. The data set is
designed to capture the high variability of outdoor street
scenes and was acquired from a moving vehicle during sev-
eral months, covering spring, summer, and fall in 50 cities,
primarily in Germany but also in neighboring countries. Al-
though this benchmark did well in the diversity of scenarios,
the shortage of 3D perception such as LIDAR and driving
status data makes it not so appropriate to learn driving poli-
cies.

Oxford The data was collected by the Oxford RobotCar
platform [24], an autonomous Nissan LEAF. It includes
over 1000km of recorded driving with almost 20 million
images collected from 6 mounted cameras, along with LI-
DAR, GPS and INS ground truth. In addition, it was col-
lected in all weather conditions, including heavy rain, night,
direct sunlight and snow. Road and building works over the
period of a year significantly changed sections of the route
from the beginning to the end of data collection. Same as
KITTI and Cityscapes, it omits drivers’ behaviors, which is

of great significance for the decision prediction.

BDDV Berkley DeepDrive Video dataset [27] (unpublished
completely) is a benchmark that is intended for driving
predictions, which provides more than 10k-hour dash-cam
videos in different periods of multiple cities with varied
weather conditions. From the paper, it is at least two or-
ders larger than other public datasets for vision-based au-
tonomous driving. It also contains labels including steering
angles and vehicle speeds like Comma.ai. Due to focus on
end-to-end generic driving model training, it neglects spe-
cific car annotations. Unfortunately, it only concerns 2D vi-
sion. In another word, it misses 3D stereoscopic depth per-
ception information such as point clouds or meshes, which
is an essential cue for future vehicle driving.

3. Dataset

Our dataset is intended for driving policy learning and
largely different from previous ones for its novel hierarchy
and excellent properties. In this section, we firstly intro-
duce our collection platform system in Section 3.1. Then
the pipeline of preprocessing LiDAR data is given in Sec-
tion 3.2. Finally, in Section 3.3, we compare our dataset
with existing benchmark and display features of DBNet.

3.1. Platform and Data Collection

As is shown in Figure 2, the dataset was acquired by
our collection system in a multi-functional road informa-
tion acquisition vehicle. The vehicle we used is a Buick
GL8 loaded with multiple perception scanners and sensors.
We collected three types of signals, namely, point clouds,
videos and driving behaviors.



Datasets Video/Image LiDAR Behaviors
KITTI X X ×
Cityscape X × ×
Oxford X X ×
Comma.ai X × X
BDDV X × X
DBNet (ours) 4 4 4

Table 1. Comparison with existing public driving datasets. Our
dataset is first to combine 2D and 3D vision with labeled drivers’
behaviors.

Point Cloud We equipped the vehicle with a pair of Velo-
dyne scanners, including one HDL-32E and one VLP-16
laser scanner. In our experiment, we mainly exploited HDL-
32E to collect point cloud data. The HDL-32E is always
used for high-precision and wide-range point clouds acqui-
sition, of which frequency is 10 Hz with 32 laser beams and
depth range is from 1m to 70m with a resolution of 2cm.
The range of scanning angle is from +10.67 to −30.67 de-
grees view in vertical and 360 degrees view in horizontal.
The density is about 700,000 points per second. Velodyne
laser scanners are installed on the top front of our vehicle.

Video A color dashboard camera with real-time update sys-
tem is placed on the top right of the front glass, which cap-
tures the video frame with 30 frames per second, of which
the resolution is up to 1920× 1080. Moreover, 128G mem-
ory space makes it possible to record 20-hour continuous
1080P videos maximally.

Driving Behavior A recording software is wirelessly con-
nected to vehicle controller to get velocity from sensors
equipped. Its resolution is up to 0.1km/h. The driver steer-
ing angle meter acquires the orientation data, whose resolu-
tion is 1 degree. When the steering wheel has a left (right)
rotation with regard to standard center angle, angle meter
records a negative (positive) value.

Using our platform, we totally obtained seven sets with
different test scenarios. Every set contains three types of
data including point clouds, videos and driver behaviors.
The amount of all point clouds is around 1TB and traffic
videos are about 15GB. In addition, collected data includes
a variety of traffic conditions such as boulevard, primary
road, mountain road, school area, narrow road and even
tourist special route.

3.2. Data Preprocessing

In this section, we only introduce the preprocessing of
point clouds. The processing of videos and driving polices
is given in Section 4.4.

On the whole, there are three major aspects of point
cloud processing (middle pipeline in Figure 3).

Frames Fusion Every 200 frames of raw point clouds, one
of which captures small part of real scenes, were fused into
one scene. One scene is corresponding to one video frame
and one pair of driving behaviors. After that, each test sce-
nario (set) owns around 600 scenes. For the point clouds ob-
tained by our fusion algorithm are stored in PCD format, we
employed a standard software to transform data into LAS
format, which is an industry standard for LiDAR data.

Synchronization LiDAR scanners and speed sensors with
video system are synchronized in advance to obtain valid
data for driving policy learning. It is worthy to mention that
synchronization is essential step before data collecting and
we try the best to keep it precise (The bias is lower than 0.1
second).

Addressing Errors We triple-checked acquired data com-
prehensively and insured that videos, point clouds and driv-
ing behaviors are synchronous. Some unexpected errors
were corrected after we manually re-calibrated to produce
high-quality data in those time sections.

3.3. Data Structure

Our DBNet is a benchmark comprised of real driving
videos, point clouds and standard driving behaviors. The
data structure of dataset is illustrated in Figure 3. Com-
pared with existing benchmark datasets, DBNet benchmark
has combined 2D and 3D vision and moves the first attempt
to leverage depth information (point clouds) to make the
driving predictions. More details are shown in Table 1.

In consequence, the dataset is largely different from pre-
vious benchmarks for vision-based autonomous driving. To
the best of our knowledge, it is the first benchmark for au-
tonomous driving policy prediction combined with 2D and
3D information.

3.4. Features and Statistics

Our dataset has a list of excellent features illustrated in
Figure 4, which are beneficial to policy learning. We have
performed an in-depth analysis on properties of our dataset.
Scale We have used two kinds of LiDAR scanners to collect
point clouds. They produced more than 1TB point clouds
covering more than 100km distance, which is two times
larger than previous KITTI. To the best of our knowledge,
it is the largest public LiDAR data with corresponding ve-
hicle status (speed and angle).

Diversity Our dataset contains a variety of traffic condi-
tions, including local route, boulevard, primary road, moun-
tain road, school areas, which contains a number of cross-
roads, urban overpasses, ramp ways and hairpin bends. So
our benchmark covers light, normal and heavy traffic situa-
tions. In addition, it also meets scenes with different num-
bers of pedestrians. For instance, there are many pedestrians
in school areas but few in highway. More specifically, our
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Figure 4. Driving Behavior Distribution, Object Occurrence
and Scenarios Statistics of our Dataset. This figure demon-
strates (from left to right and top to bottom): the vehicle and accel-
erated speed distribution, the wheel angle and angular acceleration
distribution, different types of objects occurring and different traf-
fic conditions (road types) in our sequence.

dataset contains more than 1500 cars, 500 road signs, 160
traffic lights and 363 crossroads and 32 footbridges. The
diversity of real road scenes meets the real requirement for
autonomous driving practice and makes our models more
generic to operate in real scenarios.

Quality We use the Velodyne HDL-32E scanner to acquire
3D point clouds. HDL-32E can produce accurate depth in-
formation in mobile platforms. The depth range is 70 me-
ters and it can achieve 2cm resolution. Additionally, the
density of points is approximately 34,000 points per sec-
ond so that abundant information is included in our point
clouds data. We can clearly see buildings, trees, road lines
traffic lights and even pedestrians. As for digital videos, ve-
hicle’s dashboard camera produces 1920× 1080 resolution
videos with minor distortion while the vehicle moving at
high speed.

4. Experimental Evaluation

This section answers how to leverage depth information
and what we can achieve if current state-of-the-art tech-
niques are used. Section 4.1 and 4.2 define prediction tasks
in our experiment and evaluation metrics. Then representa-
tive approaches tested in our dataset are displayed in Sec-
tion 4.3 and more details of the training process are supple-
mented in Section 4.4. Finally, we give experimental results
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Figure 5. Prediction accuracy variation trends for trained model.

and discussion of our methods in Section 4.5 and 4.6.

4.1. Tasks

Driving behavior prediction tasks can be classified into
two categories, discrete and continuous prediction.

Discrete action prediction It is to predict current proba-
bility distribution over all possible actions. The limitation
of discrete prediction is that autonomous vehicle can only
make decisions among limited predefined actions. For ex-
ample, [27] defines four actions: straight, stop, left turn and
right turn and policy decision becomes classification task.
Obviously, the discrete task is not suitable for real driving,
since it is too coarse to guide the vehicle driving.

Continuous prediction It is to predict current states of ve-
hicles such as wheel angle and vehicle speed, which is a re-
gression task. If driving policies on all real-world states can
be predicted correctly, vehicles are expected to be driven
successfully by trained model.

Therefore, we model driving process as a continuous
prediction task. Our task is to train a model that receives
multiple perception information including video frames and
point clouds, thus predict correct steering angles and vehi-
cle speeds.

4.2. Evaluation Metric

To evaluate the performance of driving behavior predic-
tion, we investigated previous evaluation metrics. In [27],
Xu et al. proposed a driving perplexity metric which is in-
spired by representative Markov model in linguistics. The
action perplexity is defined as the exponent of the sum of
entropy in sequential prediction events. Perplexity metric
is a positive number smaller than one and the smaller score
indicates the more accurate prediction.

Nevertheless, many researchers do not consider it as an
effective metric. It is because that they do not give it real-
world meaning and they believe perplexity value is more
suitable for working as loss function in training process. For
example, people do not know whether their models are ef-
fective enough or not, when the perplexity is 0.1 (seemingly



Figure 6. Examples of gray and jet feature maps. First row of this figure is gray feature maps and second row is the corresponding
colored feature maps using jet color map. Depth information and spatial information (pedestrians, vehicles, trees, traffic lights, bridges,
buildings and so on) can be obtained implicitly from maps.

low).
Accuracy metric is more intuitive in comparison to per-

plexity. More importantly, accuracy metric has been widely
adopted [14, 20, 24] and applied to realistic scenarios [14].
If vehicles can always be very close to ground truth behav-
ior, they will self-drive smoothly and safely.

Threshold In accuracy computing, we need to count how
many predictions are correct. Therefore, a tolerance thresh-
old is required. When the bias between prediction and
ground truth is smaller than tolerance threshold, we count
this prediction are a correct case. In fact, human drivers
also have minor biases in driving, but it can be tolerated.

4.3. Representative Approaches

To demonstrate the effectiveness of depth information,
we explore how well prediction models can achieve if cur-
rent techniques are utilized. As before, we should intro-
duce some learning tools and depth representation as prior
knowledge. In the end, two current mainstream frameworks
are presented.

4.3.1 Learning Tools

DNN. DNN has been built as a powerful class of models for
extracting image features. In this paper, we adopt Resnet
[12] and Inception-v4 [25], which are all the state-of-the-
art approaches for extracting image features. These two
models are pretrained on ImageNet [23] and fine-tuned in
our experiments. Besides, we also use NVIDIA architec-
ture [14] which is much smaller than networks mentioned
above but has been tested well in real practice such as high-
way lane following.

LSTM. Driving policy prediction based on one frame (or
small frame batch) only may miss information in the tem-
poral domain. Therefore, we make use of long short-term
memory (LSTM) [13] recurrent neural network to capture
temporal events. LSTM is a well-improved recurrent neu-
ral network by introducing memory gates. It avoids gradi-
ent vanishing and is capable of learning long-term depen-
dencies. Actually, LSTM is widely used in state-of-the-art

frameworks for predicting driving behaviors. In [9], LSTM-
based framework is proposed for video classification. The
championship [16] in Udacity Self-Driving Challenge 2 also
adopts this architecture.

4.3.2 Depth Representation

To leverage point clouds information effectively, we should
seek a powerful depth representation. We have attempted
different lines of techniques including point clouds reshap-
ing, point clouds mapping and PointNet.

Point Clouds Mapping (PCM). We adopt the algorithm
proposed in [28] to preserve geometrical information from
raw point clouds. As shown in Figure 7, we firstly divides
mobile LiDAR points into h × w grids on XOZ plane,
where h and w are 600 and 1080 in our paper respectively.
Each grids is represented by a single value to form a h× w
feature map. The feature values of different grids are cal-
culated using the algorithm in [28]. Intuitive idea behind it
is to get the nearest points of Y coordinate in each grid. In
short, feature map nicely extracts geometry information in
point clouds. Figure 6 demonstrates some samples of fea-
ture maps and their jet color visualization in our dataset and
Figure 7 depicts pipeline of this process.

PointNet. A novel PointNet architecture is put forward in
[22] and opens a new direction for directly utilizing disor-
dered point clouds. It directly takes disorder points as the
input of neural networks and finally output the represen-
tation features. Currently, this distinct architecture outper-
forms other shape representation methods and achieves high
accuracy.

4.3.3 Two Mainstream Frameworks

As is illustrated in Figure 8, inspired by plentiful previous
works [14, 9, 16, 24], we decide to adopt two representative
mainstream frameworks for policy prediction tasks, namely
“DNN-only” and “DNN-LSTM”.

DNN-only. [14, 24] adopt this line of framework in their
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Figure 7. The pipeline of extracting feature maps from raw point clouds. Firstly, split XOZ plain into small grids, one of which is
corresponding to specific one pixel in feature maps. Secondly, group raw points by projecting points into grids in XOZ. Then calculate
feature values (F-values in figure) in each grid. Finally, generate feature maps by visualizing feature matrix and rendering with jet color
map.
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Figure 8. Network architecture of our prediction models.

driving prediction. The “DNN-only” framework is an end-
to-end system that receives one (or a mini-batch) frame in-
put and predicts driving behavior (seeing Figure 8 (a)). We
employ three representative DNNs (NVIDIA, Resnet152
and Inception-v4) to extract features of RGB frames and
2D depth maps by PCM. The feature of point cloud is also
extracted through PointNet. Thus, we concatenate two fea-
tures (IO + PCM or IO + PointNet) as the input vector of one
1024 layer. This hidden layer is fully connected to fusion
network, which outputs final driving behavior prediction.

DNN-LSTM. [9, 16] utilize this line of framework in their
research. Different from “DNN-only”, we replace fusion
network with stacked LSTM nets in “DNN-LSTM” frame-
work. (seeing Figure 8 (b))

More specifically, two features of input data are ex-
tracted and concatenated like “DNN-only” framework.
Then the concatenated vectors are sent into stacked LSTMs
to get predictions.

4.4. Details of Training

The training samples are time-registered data including
videos, point clouds, feature maps and driving behaviors.
The captured videos are down-sampled to 1 fps. Frames
are reshaped to different sizes which are suitable for three
DNNs (NVIDIA: 66 × 200, Resnet: 224 × 224 and Incep-
tion: 299 × 299). Besides, point clouds are down-sampled
to 16384 points (16384×3) while adopting PointNet. Orig-
inal point clouds which contain millions of points in each
scene are used to generate feature maps directly to maintain
enough information.

Our loss objective is a root-mean-square deviation
(RMSD) to represent the sample standard deviation of the
differences between predicted values and ground truth val-
ues. Vehicle speed and steering angle prediction models are
trained individually. We attempt to train them jointly, but
the performance is slightly worse than the cases where they
are trained individually. We use a 80-20 training-testing
split in our experiment and Adam optimizer [15] to mini-
mize the loss function.

4.5. Results

Table 2 shows the accuracy of two aforementioned main-
stream frameworks. Each setting is measured with the accu-
racy of predictions on wheel angles and vehicle speeds. Fur-
thermore, we adopt three network structures to extract fea-
tures of video frames and depth maps. The tolerance thresh-
olds of vehicle speed and wheel angle are 5km/h and 6◦,
respectively. More results under different tolerance thresh-
olds are available in the supplementary file. In Figure 5,



DNN Architecture Metric
prediction accuracy of steering angle and vehicle speed

DNN only DNN-LSTM
IO PM PN IO PM PN

NVIDIA angle 63.0% 67.1% 71.1% 77.9% 83.5% 81.6%
speed 70.1 % 69.2% 66.1% 70.9% 73.8% 76.8%

Resnet-152 angle 65.3% 70.8% 68.6% 78.4% 84.2% 82.7%
speed 71.4% 72.6% 69.4% 71.9% 74.3% 78.3%

Inception-v4 angle 70.5% 71.1% 73.2% 78.3% 83.7% 84.8%
speed 68.5% 70.3% 69.3% 70.3% 76.4% 77.3%

Table 2. Performance of different combinations of basic networks with and without depth information. IO represents feeding images
only into networks. PM denotes plain images plus feature maps (PCM). PN denotes plain networks combined with PointNet architecture.
The accuracies are measured within 6◦ or 5 km/h biases.

we display the trends of accuracy in IO model that adopted
NVIDIA architecture with tolerance threshold increasing.

Overall, “DNN-LSTM” outperforms “DNN-only” set-
ting, which means that feeding videos-frames in the se-
quence to networks helps autonomous vehicles to make de-
cisions. It is because that independent image neglects im-
portant long-term event information.

More importantly, it is fascinating that utilizing depth
information improves the accuracy of prediction greatly in
comparison to the use of video frames only (IO in Table 2).
It again verifies the importance of depth information for
driving behavior prediction and also shows the great po-
tentials to improve driving prediction task by designing ad-
vanced depth representations and effective ways of extract-
ing point features.

4.6. Discussion

Firstly, regarding autonomous driving prediction process
as a temporally sequential model keeps more essential infor-
mation and gets better results. The system that holds mem-
ory in sequence is suitable for deciding future trends.

Secondly, depth information contributes to more reli-
able results and it helps vehicles learn driving polices more
effectively. In consequence, we believe that future au-
tonomous vehicles are likely to equip with 3D-scanners in
order to gain comprehensive perception like the human.

Thirdly, although we use powerful DNNs such as Resnet
to extract features, the improvement is still minor, which
means we may meet an upper-board for 2D vision.

Finally, the large gap among different ways of using
depth information tells us current depth representation is
still an open problem that is not fully resolved. Even though
our paper has attempted various depth representation and
seems to produce good results, we still believe that there
are huge potentials for depth utilization.

5. Conclusion and Future Work

In this paper, we have proposed a DBNet benchmark
dataset, which is among the first attempts to utilize point
clouds to help driving policy learning. We have performed
an in-depth analysis of how important depth information is,
how to leverage depth information and what we can achieve
by leveraging current representative techniques. From pre-
liminary experiment results, we found that the utilization of
depth information had resulted in considerable promotion in
prediction performance. However, it still has a large room to
improve the usage of point cloud information. We believe
our benchmark dataset will open one door to study policy
learning by providing extra but significant point clouds.

Our paper has attempted varied ways to take the advan-
tages of point clouds in the benchmark. Even though these
methods has helped networks to learn driving policies, they
are far from optimal solutions for insufficient utilization of
point clouds. How to make the best of these information
remains to be further studied.

Moreover, although the supervised end to end segmen-
tation may improved performance greatly, it may be too
expensive to annotate the training data. Unlike plane 2D
images or videos, point clouds contains rich depth informa-
tion and geometrical features. In consequence, it is feasible
to segment point clouds in unsupervised ways [2, 26]. We
believe that affordable weakly-supervised or unsupervised
coarse segmentation will help generate quantities of anno-
tated data and learn driving policies.
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